# How to Blow Up Your Balun

(and other things too...)



Fig 36 – Coaxial Chokes Wound to Minimize L and C

Fig 37 – A Bifilar Choke

By Dean Straw, N6BV Sea-Pac June 7, 2014

Photos courtesy Jim Brown, K9YC

# This is What I Intend to do Today

• I will examine stresses placed on common-mode chokes (aka, "baluns") as hams use/abuse them.

# This is What I Intend to do Today

- I will examine stresses placed on common-mode chokes (aka, "baluns") as hams use/abuse them.
- I will examine the efficiency of simple dipole multiband antennas and their feed systems.

# Stressing a Balun



*Figure courtesy K9YC* 

# What's a Common Mode Choke?

- A circuit element that reduces common mode current by adding a high impedance in series with the common mode circuit
  - –Reduces <u>radiation</u> from the cable
    –Reduces <u>reception</u> by the cable

Slide courtesy K9YC

# **Current-Mode Chokes**

 Impedance is assumed high enough to "choke off" undesired common-mode currents, preventing radiation from the transmission line. This is the best case, with the least power lost in the choke balun due to common-mode current. (More on this later in discussing OCF dipoles.)

## **Current-Mode Chokes**

- Impedance is assumed high enough to "choke off" undesired common-mode currents, preventing radiation from the transmission line. This is the best case.
- The desired differential-mode current flows in opposite directions on the inside of a coax cable. The field around the transmission line is cancelled.



# **Current-Mode Chokes**

- Impedance is assumed high enough to "choke off" undesired common-mode currents, preventing radiation from the transmission line. This is the best case.
- The desired differential-mode current flows in opposite directions on the inside of a coax cable. The field around the transmission line is cancelled.
- The desired differential-mode currents also flows in opposite directions on balanced transmission line. The far field around the transmission line is cancelled.



Fig 36 – Coaxial Chokes Wound to Minimize L and C

Fig 37 – A Bifilar Choke

Example of current-mode transmission-line chokes, also known commonly as "choke baluns." *Photos courtesy Jim Brown, K9YC*.

 The common-mode chokes shown in the previous slide are designed by K9YC for 50-Ω antennas, and can handle SWRs up to about 10:1 without self-destructing at a 1.5 kW power level.

- The common-mode chokes shown in the previous slide are designed by K9YC for 50-Ω antennas, and can handle SWRs up to about 10:1 without self-destructing at a 1.5 kW power level.
- They show wideband common-mode impedances of more than 5000  $\Omega$ , effectively choking off almost any kind of common-mode currents over more than three octaves of frequency.

- The common-mode chokes shown in the previous slide are designed by K9YC for 50-Ω antennas, and can handle SWRs up to about 10:1 without self-destructing at a 1.5 kW power level.
- They show wideband common-mode impedances of more than 5000 Ω, effectively choking off almost any kind of common-mode currents over more than three octaves of frequency.
- The length of the RG-303 type Teflon-insulated coax used is about 1 foot per turn through the ferrite donuts, for a total of about 6 feet of RG-303 for 5 turns.

# The Quest for Multiband Operation with a Single-Wire Dipole Antenna

Operating a dipole at even harmonic frequencies can be rough: e.g.,
 40 meter dipole operated on 20 meters, or on 10 meters.

Feed-point impedances for a 66-foot long, center-fed inverted-V dipole, apex at 50 feet high over ground with dielectric constant of 13, conductivity of 5 mS/m. Freq. Feed-Point MHz Impedance 1.83 MHz: 1.6 – j 2257 Ω Even worse! 3.8 MHz: 10.3 – j 879 Ω 7.1 MHz: 64.8 – j 40.6 Ω 10.1 MHz: 21.6 + j 648 Ω 14.1 MHz: 5287 – j 1310 Ω 18.1 MHz: 198 – j 820 Ω 21.1 MHz: 103 – j 181 Ω 24.9 MHz: 269 + j 570 Ω Pretty bad 28.4 MHz: 3089 + j 774 Ω <

Bad

# The Quest for Multiband Operation with a Single-Wire Dipole Antenna

- Operating a dipole at even harmonic frequencies can be rough: e.g., 40 meter dipole operated on 20 meters.
- Single feed line—coax or open-wire line?

# The Quest for Multiband Operation with a Single-Wire Dipole Antenna

- Operating a dipole at even harmonic frequencies can be rough: e.g., 40 meter dipole operated on 20 meters.
- Single feed line—coax or open-wire line?
- Where should the common-mode choke balun go? I'll go through several worst-case scenarios. But first...

# Back in the Good Ole Days...



#### Balanced Antenna Tuner

• An intrinsically balanced antenna tuner, such as a Johnson Matchbox, uses no lossy coax inside as a balun. It is link fed.





#### TLW, the "Swiss Army Knife" of Transmission Lines

| TLW                                       | President State State                                                                              |                               |
|-------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|
| TLW, Tr                                   | ansmission Line Program for Win                                                                    | dows Help                     |
| Version<br>Cable Type: 6                  | 3.24, Copyright 2000-2014, ARRL, by N6BV, Jan. 31, 201<br>00-Ohm Open-Wire Ladder Line, #12 Wire   | 4 <b>72</b>                   |
| Feet     Leng     Meters     Use          | oth: 100 Feet 1.558 Lambda Freque<br>"w" suffix for wavelength (for example, 0.25w)                | ncy: 14.1 MHz                 |
| Characteristic Z<br>Velocity Factor:      | ): 599.9 - j 0.49 Ohms Matched-Line Loss: 0.06<br>0.92 Max Voltage: 12000 V Total Matched-Line Los | 9 dB/100 Feet<br>ss: 0.069 dB |
| <ul> <li>Normal</li> <li>Autek</li> </ul> | Load Resistance: 5287     Ohms     Ohms     C Input Reactance: -1310                               | ./Current<br>sist./Reac.      |
| O Noise Bridge                            | <u>T</u> uner                                                                                      | <u>P</u> rint E <u>x</u> it   |
| SWR at Line Inp<br>Additional Loss        | ut: 8.72 SWR at Load: 9.36 Rho at<br>Due to SWR: 0.236 dB Total Line Loss:                         | Load: 0.80692<br>0.305 dB     |
| Impedance at Inp                          | out: 435.83 - j 1328.70 Ohms = 1398.35 Ohms at                                                     | -71.84 Degrees                |

The latest version of *TLW* updates the matched-line losses of "Window" lines with new measurements made by the ARRL Laboratory.

# Losses in a Simple L-Network Tuner



#### Ex. 1: Balanced Antenna Tuner with Open-Wire Line

• An intrinsically balanced antenna tuner, such as a Johnson Matchbox, uses no lossy coax inside as a balun. It is link fed.



#### Ex. 2: Unbalanced Tuner With Choke Balun at Input

• If the choke balun is put at the 50-Ω input of an unbalanced tuner, the differential-mode loss due to SWR can also be low.



#### Ex. 2: Unbalanced Tuner With Choke Balun at Input

• If the choke balun is at the 50-Ω input of an unbalanced tuner, the differential-mode loss due to SWR will be low.



#### Ex. 2: Unbalanced Tuner With Choke Balun at Input

• However, the mechanical configuration is more complex for a choke balun at the tuner's input.



# Ex. 3: Using "Window Line"

| TLW                                                   | 9-1                                     |                                       | 100                              |                                                          | X             |
|-------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------------|---------------|
| TLW, Tr                                               | ansmissi                                | on Line Pr                            | ogram fo                         | r Windows                                                | <u>H</u> elp  |
| Version<br>Cable Type: 4                              | 3.24, Copyrigl<br>50-Ohm Wind           | nt 2000-2014, ARF<br>ow Line, Wireman | RL, by N6BV, Ja<br>#551          | n. 31, 2014<br>💌                                         | TÊW           |
| <ul> <li>Feet</li> <li>Meters</li> <li>Use</li> </ul> | oth: 100<br>"w" suffix for wa           | Feet 1.50<br>velength (for examp      | 67 Lambda<br>e, 0.25w)           | Frequency: 14.1                                          | MHz           |
| Characteristic Z<br>Velocity Factor:                  | ): 402.7<br>0.915 Max                   | -j1.20 Ohms Ma<br>Voltage: 10000 V    | tched-Line Loss<br>Total Matched | :: 0.255 dB/100 F<br>I-Line Loss: 0.25                   | eet<br>5 dB   |
| <ul> <li>Normal</li> <li>Autek</li> </ul>             | <ul> <li>Load</li> <li>Input</li> </ul> | Resistance:                           | 5287<br>Ohms                     | <ul> <li>Volt./Current</li> <li>Resist./Reac.</li> </ul> | <u>G</u> raph |
| O Noise Bridge                                        |                                         |                                       |                                  | <u>T</u> uner <u>P</u> rint                              | E <u>x</u> it |
| SWR at Line Inp                                       | ut: 9.91                                | SWR at Load:                          | 13.93                            | Rho at Load: 0.8                                         | 6603          |
| Additional Loss                                       | Due to SWR:                             | 1.201 dB                              | Total Line L                     | oss: 1.456 dB                                            |               |
| Impedance at Inp                                      | out: 214                                | .47 - j 816.13 Ohn                    | ns = 843.84                      | Ohms at -75.28 De                                        | egrees        |

# Ex. 3: Using "Window Line"

| Low-Pass L-Network     |                        |               |                 |                |               |
|------------------------|------------------------|---------------|-----------------|----------------|---------------|
| 450-Ohm Window Lir     | ne, Wireman #551       | Length: 10    | 00 feet         | Frequency:     | 14.1 MHz      |
| At load: 5287 - j 1310 | 0 ohms = 5446.9 ol     | nms, at -13.9 | degrees Loa     | d SWR = 13.9   | 3             |
| Eff. Q = 8.2 1.5:1 SV  | VR BW = 698.8 kHz      | (5.0%) and 2  | 2:1 SWR BW =    | 1210.4 kHz (8. | .6%)          |
| Estimated power lost   | in tuner for 1500 W    | input: 66 W   | (0.19 dB = 4.49 | % lost)        |               |
| Transmission-line loss | s = 1.46  dB. Total lo | ss = 1.65 dB. | Power into loa  | ad = 1025.7 W  |               |
| At 1500 W:             | L1                     | C2            |                 |                |               |
| Unloaded Q             | 200                    | 1000          |                 |                |               |
| Reactance              | 395.56                 | -743.395      |                 |                |               |
| Peak Voltage           | 3064 V                 | 3086 V        |                 |                |               |
| RMS Current            | 5.5 A                  | 2.9 A         |                 |                |               |
| Est. Pwr Diss.         | 59 W                   | 6 W           |                 |                |               |
| RMS Vin: 273.86 V      | at 83.08 deg.          | RMS Vout:     | 2182.48 V at    | 0.00 deg.      |               |
|                        | 4.46 uH                |               |                 |                |               |
|                        | •                      | <b></b> •     |                 |                | <u>P</u> rint |
|                        |                        |               |                 |                |               |
| 50.0 Ohms              | c                      | 2             | 214 47 - i i    | 816 13 Ohms    | Main          |
|                        |                        |               | ,               |                | Screen        |
|                        | •                      | ••            |                 |                | Cancel        |
|                        |                        |               |                 |                |               |
|                        |                        | 15.2 pF       |                 |                |               |

#### Ex. 3: Johnson Matchbox With "Window Line"

• An intrinsically balanced antenna tuner, such as a Johnson Matchbox, uses no lossy coax inside as a balun. It is link fed.



#### Ex. 4: Balanced Antenna Tuner

• The loss is also low if an auto tuner is located up at the antenna feed point.



• Assume antenna is a 40-meter dipole set up as an Inverted-Vee and operated at a worst-case frequency of 14.1 MHz.



- Assume antenna is a 40-meter dipole set up as an Inverted-Vee and operated at a worst-case frequency of 14.1 MHz.
- Jim, K9YC, calls this my "train wreck" scenario!



• *EZNEC* says the feed-point Z at 14.1 MHz is  $5287 - j 1310 \Omega$ .

- *EZNEC* says the feed-point Z at 14.1 MHz is  $5287 j 1310 \Omega$ . •
- *TLW* computes the loss in 6' of RG-303 making up the choke balun as 1.436 dB. Now, we "daisy chain" coax to coax.

|                             | TLW TLW, Transmission Line Program for Windows Help Version 3.00, Copyright 2000-2006, ARRL, by N6BV, Mar 14, 2006 Cable Type: RG-142/303 High-Temp. Teflon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                             | Image: Section of the section of th | SWR!          |
|                             | Image: Source       Image: Source       Image: Source       Source       Source       Image: Source       Source       Source       Image: Source       Image: Source       Source       Source       Image: Source <t< th=""><th>Loss in choke</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Loss in choke |
| Z seen by 100'<br>of RG-213 | SWR at Line Input:53.36SWR at Load:111.67Rho at Load:0.98225Additional Loss Due to SWR:1.351 dBTotal Line Loss:1.436 dBImpedance at Input:1.26 - j 50.66Ohms =50.67 Ohms at-88.58 Degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | balun         |

32

*TLW* calculates that 100' of RG-213 seeing  $1.26 - j 50.66 \Omega$ • plus an efficient tuner will have a loss of 9.41 dB, giving an input to the choke balun of 1500 W - 9.41 dB, or 171 W.

|       | Image: TLW       Image: Low-Pass L-Network         Image: TLW, Transmission Line Program for Windows       Image: Low-Pass L-Network         RG-213 (Belden 8267)       Length: 100.000 feet       Frequency: 14.1 MHz         Version 3.00, Copyright 2000-2006, ARRL, by N6BV, Mar 14, 2006       Image: Low-Pass L-Network       RG-213 (Belden 8267)       Length: 100.000 feet       Frequency: 14.1 MHz         Cable Type:       RG-213 (Belden 8267)       Length: 100.000 feet       Frequency: 14.1 MHz         Cable Type:       RG-213 (Belden 8267)       Length: 100.000 feet       Frequency: 14.1 MHz         TLW       Table Type:       RG-213 (Belden 8267)       Length: 100.000 feet       Frequency: 14.1 MHz         Cable Type:       RG-213 (Belden 8267)       Image: Low-Pass L-Network       Estimated power lost in tuner for 1500 W input: 6 W (0.02 dB = 0.4% lost)       Estimated power lost in tuner for 1500 W input: 6 W (0.02 dB = 0.4% lost)         Transmission-line loss = 9.41 dB. Total loss = 9.42 dB. Power into load = 171.3 W       The set of the set |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Image: Source       Image: Source<                                                                                                                                                                                                               |
| choke | C Autek       Onms       C Resist/Reac.       Onms       C Resist/Reac.       Onms       Duprint       Duprint </th                                                                                                                                                                                                                                                                                                                                                                              |
|       | At tuner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



 Loss in choke balun = 48 W, which is 8 W/ft; should not fry the small choke balun, even if airflow is restricted. The overall system loss is 10.87 dB. The antenna thus receives 122 W for 1500 W power into the tuner.



Note that the high loss in the RG-213 coax is "protecting" the balun.

• Now what sort of dimwit would try to feed a 40-meter halfwave dipole on its full-wave resonance, through coax?

 Now what sort of dimwit would try to feed a 40-meter halfwave dipole on its full-wave resonance, through coax? Don't ask me how I know...

 A common installation, where open-wire feed line goes to a choke balun placed at a rear window in the shack and then, say, a 20' coax jumper goes from the choke to the Antenna Tuner.



• At the full-wave frequency of 14.1 MHz for this 40-meter halfwave dipole, the total window ladder-line loss is 1.456 dB. Not too bad! Now, daisy chain Zin to the choke balun load.

| Version 3.23, Copyright 2000-2014, ARRL, by N6BV, Jan. 25, 2014<br>Cable Type: 450-Ohm Window Line, Wireman #551<br>• Feet<br>C Meters Length: 100.000 Feet 1.567 Lambda Frequency: 14.1 MHz<br>Use "w" suffix for wavelength (for example, 0.25w)<br>Characteristic Z0: 402.7 - j 1.20 Ohms Matched-Line Loss: 0.255 dB/100 Feet<br>Velocity Factor: 0.915 Max Voltage: 10000 V Total Matched-Line Loss: 0.255 dB<br>Source<br>• Normal<br>C Load Resistance: 5287<br>C Input Reactance: -1310<br>C Noise Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TLW, Tr                                                                                             | ansmissi                                               | on Line Pro                                                             | ogram fo                                                        | r Windows                                                                                                                  | <u>H</u> elp                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>Feet<br/>Meters</li> <li>Length: 100.000</li> <li>Feet</li> <li>Meters</li> <li>Length: 100.000</li> <li>Feet</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Length: 100.000</li> <li>Feet</li> <li>Length: 120</li> <li>Characteristic Z0:</li> <li>Autek</li> <li>Load</li> <li>Resistance: 5287</li> <li>Ohms</li> <li>Volt./Current</li> <li>Graph</li> <li>Resist./Reac.</li> <li>Graph</li> </ul> | Version                                                                                             | 3.23, Copyrigi                                         | ht 2000-2014, ARRL<br>ow Line, Wireman #                                | ., by N6BV, Jai<br>551                                          | n. 25, 2014<br>▼                                                                                                           | τĹŴ                                                    |
| Characteristic Z0: 402.7 - j 1.20 Ohms Matched-Line Loss: 0.255 dB/100 Feet<br>/elocity Factor: 0.915 Max Voltage: 10000 V Total Matched-Line Loss: 0.255 dB<br>purce<br>Normal<br>Autek<br>Noise Bridge<br>Noise Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Feet Leng<br>Meters Use                                                                             | gth: 100.000                                           | Feet 1.567                                                              | Zembda                                                          | Frequency: 14.                                                                                                             | 1 MHz                                                  |
| Normal     Image: Load     Resistance:     5287       Autek     Comput     Reactance:     -1310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                        |                                                                         |                                                                 |                                                                                                                            |                                                        |
| Autek C Input Reactance: -1310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Characteristic Zi<br>Velocity Factor:                                                               | 0: 402.7<br>0.915 Max                                  | -j1.20 Ohms Mato<br>Voltage: 10000 V                                    | hed-Line Loss<br>Total Matched                                  | : 0.255 dB/100 l<br>l-Line Loss: 0.2                                                                                       | Feet<br>55 dB                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristic Z<br>Velocity Factor:<br>Source                                                      | 0: 402.7<br>0.915 Max                                  | - j 1.20 Ohms Matc<br>Voltage: 10000 V<br>Resistance: 5                 | thed-Line Loss<br>Total Matched                                 | : 0.255 dB/100 l<br>I-Line Loss: 0.25                                                                                      | Feet<br>55 dB<br>Graph                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristic Z<br>Velocity Factor:<br>Source<br>Normal<br>Autek<br>Noise Bridge                   | 0: 402.7<br>0.915 Max<br>© Load<br>© Input             | - j 1.20 Ohms Mate<br>Voltage: 10000 V<br>Resistance: 5<br>Reactance: - | thed-Line Loss<br>Total Matched                                 | : 0.255 dB/100 l<br>I-Line Loss: 0.2<br>• Volt./Current<br>• Resist./Reac.<br><u>Iuner</u> Print                           | Feet<br>55 dB<br><u>G</u> raph<br>E <u>x</u> it        |
| SWR at Line Input: 9.91 SWR at Load: 13.93 Rho at Load: 0.86603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristic Z<br>Velocity Factor:<br>ource<br>Normal<br>Autek<br>Noise Bridge<br>SWR at Line Inp | 0: 402.7<br>0.915 Max<br>• Load<br>• Input<br>ut: 9.91 | - j 1.20 Ohms Mate<br>Voltage: 10000 V<br>Resistance: 5<br>Reactance: - | thed-Line Loss<br>Total Matched<br>287<br>0hms<br>1310<br>13.93 | : 0.255 dB/100 l<br>I-Line Loss: 0.2<br>• Volt./Current<br>• Resist./Reac.<br><u>Iuner</u> <u>Print</u><br>Rho at Load: 0. | Feet<br>55 dB<br><u>G</u> raph<br><u>Exit</u><br>86603 |

• The loss in the 6' of RG-303 making up the choke balun at the bottom of the 100' of window line is 1.075 dB. The loss in 20' of RG-213 from the choke to the tuner is 2.967 dB; the tuner loses about 0.28 dB. Overall loss is 1.456+1.075+2.967+0.28=5.78 dB.

| TLW, Transmission Line Program for Windows       Help         Version 3.00, Copyright 2000-2006, ARRL, by N6BV, Mar 14, 2006       Image: R6-142/303 High-Temp. Tefion       Image: R6-213 (Belden 8267)       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Version 3.00, Copyright 2000-2006, ARRL, by N6BV, Mar 14, 2006         Cable Type:       RG-142/303 High-Temp. Teflon         Image: Cable Type:       RG-213 (Belden 8267)         Image: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Program for Windows Help TLW, Transmission Line P                                                                                                                                            | Program for Windows Help                          |
| Image: Source Source Source Source Source Normal Construction Resistance: 1816.1       Ohms       Image: Volt / Current Construction Resist/Reac.       Image: Source Resistance: 1816.1       Image: Volt / Current Construction Resist/Reac.       Image: Source Resistance: 1816.1       Image: Volt / Current Construction Resist/Reac.       Image: Volt / Current Construction Resi                                                                                                                                                                                                                                                                                                                                                                                                                      | RRL, by N6BV, Mar 14, 2006         Version 3.00, Copyright 2000-2006, Al           Cable Type:         RG-213 (Belden 8267)                                                                  | ARRL, by N6BV, Mar 14, 2006                       |
| Characteristic Z0: 50.1 - j 0.63 Ohms Matched-Line Loss: 1.423 dB/100 Feet<br>Velocity Factor: 0.695 Max Voltage: 1400 V Total Matched-Line Loss: 0.085 dB<br>Source<br>© Normal<br>© Load Resistance: 214.5<br>© Input Reactance: 816.1<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Resist/Reac. Graph<br><u>Tuner Print Exit</u><br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Volt/Current<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>Velocity Factor: 0.66 Max Voltage: 3700 V Total Matched-Line Loss: 0.157<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Feet<br>© Noise Bridge Characteristic Z0: 50.0 - j 0.33 Ohms Matched-Line Loss: 0.783 dB/100 Fe | 0.124 Lambda Frequency: 14.1 MHz Feet Length: 20 Feet 0<br>mple, 0.25w) Use "w" suffix for wavelength (for example, 0.25w)                                                                   | 0.434 Lambda Frequency: 14.1 MHz<br>ample, 0.25w) |
| Velocity Factor:       0.695       Max Voltage:       1400       Voltal Matched-Line Loss:       0.085       dB         Source       Image: Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Matched-Line Loss: 1.423 dB/100 Feet Characteristic Z0: 50.0 - j 0.33 Ohms M                                                                                                                 | Matched-Line Loss: 0.783 dB/100 Feet              |
| Source       Image: Source with the second sec                                                                                                                               | V Total Matched-Line Loss: 0.085 dB Velocity Factor: 0.66 Max Voltage: 3700                                                                                                                  | 0 V Total Matched-Line Loss: 0.157 dB             |
| C Autek       C Input       Reactance:       -816.1       C Resist./Reac.       Graph       C Autek       C Input       Reactance:       -45.35       C Resist./Reac.       Graph       Iuner       Print       Exit       C Noise Bridge       C Input       Reactance:       -45.35       Iuner       Print       Exit       Iuner       Print       Exit       C Input       Reactance:       -45.35       Iuner       Print       Exit       Iuner       Print       Exit       Iuner       Print       Exit       Iuner       Print       Iuner       Iuner       Print       Iuner       Iuner       Print       Iuner       Iun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 214.5 © Volt./Current © Normal © Load Resistance:                                                                                                                                            | 1.76  volt./Current                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ohms C Resist./Reac. Graph C Autek C Input Reactance                                                                                                                                         | C Resist./Reac. Graph<br>↓ -45.35                 |
| SWR at Line Input:39.14SWR at Load:63.43Rho at Load:0.96896SWR at Line Input:24.60SWR at Load:44.26Rho at Load:0.958Additional Loss Due to SWR:0.990 dBTotal Line Loss:1.075 dBAdditional Loss Due to SWR:2.810 dBTotal Line Loss:2.967 dBImpedance at Input:1.76 - j 45.35Ohms =45.39Ohms at-87.78DegreesImpedance at Input:11.30 - j 110.44Ohms =111.01Ohms at-84.16Deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :       63.43       Rho at Load:       0.96896         Total Line Loss:       1.075 dB         China = 45.39 Ohms at -87.78 Degrees       Impedance at Input:       24.60       SWR at Load: |                                                   |

This is the choke balun

20' jumper from tuner to balun



 The power available at the input to the choke balun is 1500 W minus loss in antenna tuner and in 20' of RG-213 jumper from antenna tuner to the choke balun = 710 W at balun. The 696 W lost in the 20' jumper is 35 W/ft. Goodbye jumper!

| Low-Pass L-Network     |                      |              |           |                                |          |
|------------------------|----------------------|--------------|-----------|--------------------------------|----------|
| RG-213 (Belden 826     | 7)                   | Length:      | 20 feet   | Frequency:                     | 14.1 MHz |
| At load: 1.76 - j 45.3 | 5 ohms = 45.4 ohm    | ns, at -87.8 | degrees   | Load SWR = 44.26               |          |
| Eff. Q = 2.1 1.5:1 S   | NR BW = 2764.5 k     | Hz (19.6%)   | 2:1 SWR   | BW = Large                     |          |
| Estimated power lost   | in tuner for 1500 W  | input 94     | W (0 28 d | B = 6.2%  lost                 |          |
| Transmission line loss | a – 2.07 dB. Total k | nee - 3.25   |           | r into load - 710 3 W          |          |
|                        | 5 - 2.97 UD. 1010110 | JSS - J.ZJ   | ub. Fowe  | 1 mill 10au - 7 10.5 W         |          |
| At 1500 W:             | C1                   | L2           |           |                                |          |
| Unloaded Q             | 1000                 | 200          |           |                                |          |
| Reactance              | -24.979              | 120.683      |           |                                |          |
| Peak Voltage           | 387 V                | 2091 V       |           |                                |          |
| RMS Current            | 11.0 A               | 12.3 A       |           |                                |          |
| Est. Pwr Diss.         | 3 W                  | 91 W         |           |                                |          |
| RMS Vin: 273.86 V      | at 148.18 deg.       | RMS Vo       | ut: 1238. | 73 V at 0.00 deg.              |          |
|                        | 1.36 uk              | 4            |           |                                |          |
|                        | 1.50 u               |              |           |                                | Drint    |
|                        | • <u> </u>           |              |           |                                | Print    |
|                        |                      |              |           |                                | 1        |
| 50.0 Ohms              |                      | CStray       | 11        | 30 - i 110 44 Ohms             | Main     |
|                        |                      |              |           | ···· , · · · · · · · · · · · · | Screen   |
|                        | • •                  | • •          |           |                                | Canad    |
|                        |                      |              |           |                                | Cancer   |
|                        | 451.9 pF             | 10 pF        |           |                                |          |

- The power lost in the choke balun is 710 W 554 W = 156 W, 26 W/ft., a dangerous level for a balun.
- Note tuner loss: 118 W, 112 W in the coil.





 An overall feed-line loss of 5.68 dB is better than the previous loss of 10.87 dB, but it still isn't anything to write home about. And the choke-baluns probably won't survive QRO power.



10.87 dB total system loss:122 W gets to antenna for1500 W input; not veryefficient use of RF.

5.87 dB system loss: 397 W at antenna for 1500 W input; we have smoke inside the tuner, the jumper and in the choke balun.

| Setup: Inv. V 40-m<br>Dipole used at<br>14.1 MHz                | Power in Tuner                                | Power in Balun                                    | Power in Feed Line                 | Power in Antenna |
|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------|------------------|
| Classic 100' long<br>#12 open-wire line<br>Ex. 1                | 78 W, Johnson<br>Matchbox                     | NA                                                | 97 W, in #12 OWL                   | 1325 W           |
| Classic 100' long<br>#12 open-wire line<br>Ex. 2                | 90 W, balun at<br>unbalanced<br>tuner's input | 12 W balun in<br>tuner                            | 97 W, in #12 OWL                   | 1314 W           |
| Balanced tuner at<br>dipole's feed point;<br>100' RG-213; Ex. 4 | 92 W, in autotuner                            | NA                                                | 248 W, in 100' RG-<br>213          | 1160 W           |
| #551 100' window-<br>line; Ex. 3                                | 66 W, Johnson<br>Matchbox                     | NA                                                | 475 W, in 100'<br>#551 window line | 1027 W           |
| Balun in shack;<br>100' #551; Ex. 6                             | 94 W                                          | 156 W in balun;<br>696 W in 20' RG-<br>213 jumper | 157 W, in 100'<br>#551 window line | 397 W            |
| Choke balun at<br>dipole's feed point;<br>100' RG-213; Ex. 5    | 6 W                                           | 48 W                                              | 1322 W in 100'<br>RG-213           | 122 W            |

#### Ex. 8: 40-Meter Dipole Used on 80 Meters

- Loss in ladder-line at 3.8 MHz (where antenna feed point is 10.3 – j 879) is 7.062 dB, surprisingly high for window line.
- Loss in balanced tuner is 0.44 dB. Overall loss is 7.50 dB.



#### Ex. 8: 40-Meter Dipole Used on 80 Meters

- Loss in balanced tuner is 0.44 dB. The loss is mainly in the coil (117 W) but 27 W is in the tuning capacitor.
- The peak voltages inside the tuner are close to 7000 V peak.

| High-Pass L-Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                              | -            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|--------------|
| 4E0 Obm Window Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Wiromon #EE1                         | Longth: 100.000 fact Frequency:              |              |
| 450-Ohm Window Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 970.1  obm                           | t 20.2 degrees Load SWD = 150.09             |              |
| Ff = 100 - 100 - 150 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | ////////////////////////////////////// | (2.2%) and $2.1.5%$ D D W = 142.6 kHz (2.2%) | ·            |
| EII. Q = 10.0 1.3.1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n tupor for 1500 W                     | (2.2%) and 2.1 SWR DW = 142.0 KHz (5.0%)     | o)           |
| Transmission line loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 7.06 dR Total la                     | niput. 144 W (0.44 db = 9.0 % lost)          |              |
| Transmission-line loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | ss = 7.5 db. Fower Into load = 200.6 W       |              |
| At 1500 W:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1                                     | L2                                           |              |
| Unloaded Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000                                   | 200                                          |              |
| Reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -895.708                               | 1034.431                                     |              |
| Peak Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6938 V                                 | 6949 V                                       |              |
| RMS Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5 A                                  | 4.7 A                                        |              |
| Est. Pwr Diss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27 W                                   | 117 W                                        |              |
| RMS Vin: 273.86 V a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at -86.86 deg.                         | RMS Vout: 4913.36 V at 0.00 deg.             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.8 pF                                |                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •C1                                    | <b>⊢</b> •                                   | Print        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                              |              |
| 50.0 Ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 2 2285 50 1 i 5054 47 Ok                     | <u>M</u> ain |
| 00.0 01113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | - 2265.50 + J 5954.47 OI                     | Screen       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                      | <b>└──●</b>                                  | Connect      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                              | Cancel       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 43.32 uH                                     |              |

#### Ex. 8: 40-Meter Dipole Used on 80 Meters



• A number of hams use an Off-Center Fed dipole on multiple HF bands.

- A number of hams use an Off-Center Fed dipole on multiple HF bands.
- Common-mode currents are unavoidable due to asymmetric feed, even with high values of common-mode choke resistance.



- A number of hams use an Off-Center Fed dipole on multiple HF bands.
- Common-mode currents are unavoidable due to asymmetric feed, even with high values of common-mode choke resistance.
- For a typical 80-meter OCF fed 37.5% from one end, *EZNEC* calculates a choke balun loss of **326** W for a 5000-ohm choke resistance at 7.1 MHz at 1500 W.

- A number of hams use an Off-Center Fed dipole on multiple HF bands.
- Common-mode currents are unavoidable due to asymmetric feed, even with high values of common-mode choke resistance.
- For a typical 80-meter OCF fed 37.5% from one end, EZNEC calculates a choke balun loss of 326 W for a 5000-ohm choke resistance at 7.1 MHz at 1500 W.
- This is guaranteed to fry the choke balun! OCFs have a reputation for blowing up baluns.

• Loss due to high SWR can fry a choke balun, especially when an operator tries to achieve multiband QRO operation on a single-wire antenna. Some frequencies have large losses!

- Loss due to high SWR can fry a choke balun, especially when an operator tries to achieve multiband QRO operation on a single-wire antenna. Some frequencies have large losses!
- You should make sure there is air circulation inside a choke balun, especially on high-duty-cycle modes like RTTY.

- Loss due to high SWR can fry a choke balun, especially when an operator tries to achieve multiband QRO operation on a single-wire antenna. Some frequencies have large losses!
- You should make sure there is air circulation inside a choke balun, especially on high-duty-cycle modes like RTTY.
- Even at low transmitter power that allows a choke balun to survive, the system losses build up surprisingly high. After all, 11 dB down from 5 W QRP is 0.4 W QRPp.

• The old Johnson Matchboxes were inherently balanced and low-loss.

- The old Johnson Matchboxes were inherently balanced and low-loss.
- Modern designs, with choke baluns at the input of an unbalanced tuning network, can be almost as efficient.

- The old Johnson Matchboxes were inherently balanced and low-loss.
- Modern designs, with choke baluns at the input of an unbalanced tuning network, can be almost as efficient.
- When it gets wet, window ladder-line requires retuning of the antenna tuner. See W6SX's presentation on <u>www.wwrof.org</u>.

- The old Johnson Matchboxes were inherently balanced and low-loss.
- Modern designs, with choke baluns at the input of an unbalanced tuning network, can be almost as efficient.
- When it gets wet, window ladder-line requires retuning of the antenna tuner. See W6SX's presentation on <u>www.wwrof.org</u>.
- Indeed, it is hard to beat resonant antennas center fed with low-loss coax.

#### Multiple Parallel Dipoles at Common Feed Point



- The old Johnson Matchboxes were inherently balanced and low-loss.
- Modern designs, with choke baluns at the input of an unbalanced tuning network, can be almost as efficient.
- When it gets wet, window ladder-line requires retuning of the antenna tuner. See W6SX's presentation on <u>www.wwrof.org</u>.
- Indeed, it is hard to beat resonant antennas center fed with low-loss coax.
- Do the system math before blowing up components!

- The old Johnson Matchboxes were inherently balanced and low-loss.
- Modern designs, with choke baluns at the input of an unbalanced tuning network, can be almost as efficient.
- When it gets wet, window ladder-line requires retuning of the antenna tuner. See W6SX's presentation on <u>www.wwrof.org</u>.
- Indeed, it is hard to beat resonant antennas center fed with low-loss coax.
- Do the system math before blowing up components!
- Read K9YC's treatise "RFI, Ferrites and Common Mode Chokes for Hams." <u>http://audiosystemsgroup.com/publish.htm</u>.